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Outline
“Cross-validation of Experiment and Modelling for fusion and 

astrophysical plasmas”

• Bayesian inference framework (see P3-4, von Nessi)

− Used to infer flux surface geometry with uncertainties

− Provides model validation (equilibrium and mode structure)

− Can be used to identify faulty diagnostics & optimise systems

− Harnessed to infer properties of plasma (e.g. fast particle pressure)

• Anisotropy: equilibrium and stability 

− Development of anisotropy into EFIT++ 

− Determine impact of anisotropy on plasma stability

• Multiple Relaxed Region MHD model (see P1-1, S. Hudson)

− resolves chaotic field regions, islands, flux surfaces in fully 3D plasmas 

− Stepped Pressure Equilibrium Code. 

− Applied to DIIID RMP coils as illustration.



Bayesian equilibrium modelling
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Aims

(1) Improve equilibrium reconstruction 

(2) Validate different physics models
Two fluid with rotation 

[McClements & Thyagaraja Mon. Not. R. Astron. Soc. 323 733–42 2001]

Ideal MHD fluid with rotation 
[Guazzotto L et al, Phys. Plasmas 11 604–14, 2004]

Energetic particle resolved multiple-fluid 
[Hole & Dennis, PPCF 51 035014, 2009]

(3) Infer poorly diagnosed physics parameters
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“Analytic” current tomograhy

• Model the MAST plasma current 

as a cluster of rectangular, 

toroidal current beams that fill 

out the limiter region. 

• Aim is to infer the distribution for 

each of these plasma beam 

currents (ie. H = vector of 

currents, I).

• Constraints: 

– Pick up coils data, Pi (+)

– Flux loops data, Fi  (*)

– MSE data, tan i

[ Svensson J and Werner A  Plasma 

Phys. Control. Fusion 50 085002 , 2008]



Forward models for magnetics and MSE

• Forward model describes predicted signal given plasma 

parameters (ie. D|H in P(D|H)). For pickup coils Pi, flux 

loops Fi and polarisation angle i
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• MSE viewing optics on midplane  A2=A3=A40. 

Angle between 

coil normal 

and midplane
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Mean in posterior gives flux surfaces

• If current beams I have a Gaussian pdf  inference analytic



Mean in posterior gives flux surfaces

• MAST #24600 
@280ms

• D plasma, 3MW NB 
heating 

• Ip = 0.8MA, n=3

Last closed flux surface 

of MSE& EFIT

Current Tomography Poloidal flux surfaces

J and  surfaces

plotted for currents

corresponding to the

maximum of the posterior

[M.J. Hole, G. von Nessi, J. Svensson, L.C. Appel, Nucl. Fusion 51 (2011) 103005]

• If current beams I have a Gaussian pdf  inference analytic



Sampling of posterior gives distribution

• Distributions generated by sampling, e.g. q profile

q profile

#24600
Inference of poloidal 

currents: allow f() to be a 

4th-order polynomial in 

No poloidal currents

• Bayesian models for TS 

and CXRS

Errors < 5%, but are model dependant



BBayesian EEquilibrium AAnalysis & SSimulation TTool 

• Fold in Force balance model as a weak constraint by 

technique of split observations. 

• Allows quantification of agreement of force-balance through 

evidence
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Biot-Savart link to diagnostics

• Grad-Shafranov equation is non-linear: 

Computational challenges overcome by nested sampling.

Gregory von Nessi

JL
JR

Submitted 14/09/2012 Journal of Physics A: Mathematical and Theoretical 



MAST #24600 at 265ms

• Discrepancy between LHS & RHS  model not consistent with observations

• Agreement quantified by evidence ln(P(D))=-1290.037  1.129

• BEAST: p+li/2= 0.6873  0002; EFIT: p+li/2= 1.0782

Validation of force balance
Gregory von Nessi



Energetic pressure inference 

#18696 at

290 ms.

• Add polynomial parameterisations of 

Ptotal, Ptherm to H, and add analysed 

Thomson scattering data to D

• Assume 

Ptherm = (ni Ti + neTe)~ neTe

f (ψ) ψ

• Apply force-balance constraint 

Pfast = Ptot - Ptherm

[M. J. Hole, G von Nessi, M Fitzgerald and the MAST team,  Plasma Phys. Control. Fusion 

54 (2012), accepted]

inferred Pfast ~ (P⊥ + P||)/2 computed

in NUBEAM. 
• Work with CCFE: implementing 

FIDA into Bayesian framework 



Bayesian tools on MAST
• Analytic current tomography; CAR prior

[Hole et al J. Plasma Fusion Res. SERIES, Vol. 9 (2010)]

[Hole et Rev. Sci. Instrum. 81, 10E127 2010]

• Analytic current tomography; Gaussian process prior 
[ Svensson, submitted to IEEE Imaging), 

• Evidence based cross-validation
[G. T. von Nessi et al Phys. Plasmas 19, 012506 (2012)]

• BEAST: Model validation and equilibrium inference
[G. T. von Nessi et al, lodged Journal of Physics A: Mathematical and Theoretical]

• Thomson scattering ...paper in progress

• Energetic particle pressure inference 
[M.J. Hole, G. von Nessi, J. Svensson, L.C. Appel, Nucl. Fusion 51 (2011) 103005]

[M. J. Hole, G von Nessi, M Fitzgerald , the MAST team, PPCF 54 (2012), accept.]

... FIDA in progress

• Connect toroidal rotation 

• “Scheduler” service for probablistic equilibrium inference; q 

profile and uncertainty.  



Outline
• “Cross-validation of Experiment and Modelling for fusion and 

astrophysical plasmas”: 

Probabilistic (Bayesian) inference framework

− Used to infer flux surface geometry with uncertainties

− Provides model validation (equilibrium and mode structure)

− Can be used to identify faulty diagnostics & optimise systems

− Harnessed to infer properties of plasma (e.g. fast particle pressure)

• Anisotropy: equilibrium and stability 

− Development of anisotropy into EFIT++ 

− Determine impact of anisotropy on plasma stability

• Multiple Relaxed Region MHD model

− resolves chaotic field regions, islands, flux surfaces in fully 3D plasmas 

− Stepped Pressure Equilibrium Code. 

− Applied to DIIID RMP coils and ITER ELM coils as illustration. 



Expected impact of anisotropy

• If p⊥ > p||, an increase will occur in 

centrifugal shift :
[R. Iacono, A. Bondeson, F. Troyon, and R. 

Gruber, Phys. Fluids B 2 (8). August 1990]

• Compute p⊥ and p|| from moments of 

distribution function, computed by TRANSP

[M J Hole, G von Nessi, M Fitzgerald, K G McClements, J Svensson, PPCF 53 (2011) 074021]

[see V. Pustovitov, PPCF  52 065001, 2010 and references therein] 

• Infer p⊥ from diamagnetic current J⊥

• If p|| sig. enhanced by beam, p||

surfaces distorted and displaced 

inward relative to flux surfaces
Broad 

pressure 

profile

Peaked 

pressure 

profile

Parallel 

pressure 

contours(solid)

Flux 

surfaces 

(dashed)

[Cooper et al, Nuc. Fus. 20(8), 1980] 

• Small angle b between beam, field  p|| > p⊥

• Beam orthogonal to field, b=/2  p⊥ >p||



MHD with rotation & anisotropy
• Inclusion of anisotropy and flow in equilibrium MHD equations
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MHD with rotation & anisotropy
• Inclusion of anisotropy and flow in equilibrium MHD equations
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Equilibrium eqn becomes:
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[R. Iacono, et al Phys. Fluids B 2 (8). 1990]
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Set of 6 profile constraints 
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• Frozen flux gives velocity plus axis-symmetry



Neglect poloidal flow

and equilibrium eqn becomes:

• Suppose 

Set of 5 profile constraints 
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• W/  : different for MHD/ double-adiabatic/ guiding centre

• If two temperature Bi-Maxwellian model chosen
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Constraining the flux functions to 

transport codes or experiment

• TRANSP computes f(E,):   Moments give p, p||, ull, 

• Dependency of flux functions  on (R,Z) mesh 

           ,,,, ||THF  [ M. Fitzgerald, L.C. Appel, M.J. Hole

to be submitted J. Comp Phys] 



Code benchmarked
• So far tested against MAST #13050, #18696

• Able to use the same constraints as existing EFIT++

• Converges at same speed as existing EFIT++

• Soloviev benchmarks have been computed for isotropic, 

anisotropic and flow cases. [ M. Fitzgerald, L.C. Appel, M.J. Hole, 

to be submitted J. Comp Phys] 

Solution ConvergenceExtended Soloviev: 

t=0.07, M=0.8, =0.004, 

pressureflux

Soloviev: 

t=0.07



Anisotropy on MAST

[M.P. Gryaznevich et al, Nuc. Fus. 

48, 084003, 2008.; Lilley et al 35th 

EPS Conf. Plas.Phys. 9 - 13 June 

2008 ECA Vol.32D, P-1.057]

• MAST #18696

• 1.9MW NB heating 

• Ip = 0.7MA, n=2.5

• TRANSP simulation available

• Magnetics shows CAEs

• What is the impact on q 

profile due to presence of 

anisotropy and flow?

Magnetics



pll, p, flow from f(E,) moments

[35th EPS 2008; M.K.Lilley et al]

r/a=0.25

cos     ,5.0 ||

2 vvmvE 

Thermal population 

v|| > v in disitribution function, however...

p|| computed with subtracted u||  p|| < p 

[M J Hole, G von Nessi, M Fitzgerald, K G McClements,  J Svensson, PPCF 53 (2011) 074021]

In single fluid limit, need to add thermal species and 

recompute moments to get complete anisotropy.



In absence of thermals... p⊥/p|| ≈ 1.7

p⊥/p|| ≈ 1.7

0/

 = toroidal flux

Impact on plasma computed using FLOW, EFIT TENSOR

Low grid resolution of FLOW at core 

Calculation of  

MAST #18696 

at 290ms.

p / p|| ~ 1.7

poloidal flux 

surfaces of 

constant p||. 

FLOW  scans EFIT++ (TENSOR) 

(slowing down 

beam particles)

 <0:  p⊥/p|| ≈ 1.7

 =0:  p⊥/p|| = 1



• How do predicted mode 

frequencies change due to 

changes in q produced by 

anisotropy and flow? 

Impact of anisotropy on wave modes

n=1 mode

• Calculation of change in 

stability due to anisotropy in 

progress.

• Appetiser: What 

is the change in 

ideal MHD 

stability of n=1 

TAE?

n=-10 mode



Increased shear gives multiple TAEs
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I0, I1 varied to match q0=1.7, qmin=1.24

core reverse shear

• Reshape plasma to have larger 

reverse shear

Single global TAE at (m,n) = (1,1) Reverse shear produces second (m,n)) 

= (1,1) odd TAE resonance in the core

[ M J Hole, G von Nessi, M Fitzgerald and the 

MAST team, accepted, PPCF 54 (2012)]



Anisotropy ongoing work
• Kinetic constraints from TRANSP. 

• Configuration physics: 

– scan of configurations with significant anisotropy. 

– experiments with varying beam parameters (MAST, DIIID?)

• Formulate stability in presence of anisotropy, flow

• Implement anisotropy extensions of MISHKA or PHOENIX  

− generation of MISHKA straight field line metric directly from (R,Z) 

metric  ( Kieran Woolfe – Honours student)

• Couple HAGIS to EFIT TENSOR and MISHKA or PHOENIX

• Extend CSCAS to  include anisotropy. 

• Feed anisotropy inputs into ANIMEC to explore impact of 

anisotropy in 3D (no flow).



Outline
“Cross-validation of Experiment and Modelling for fusion and 

astrophysical plasmas”: 

• Probabilistic (Bayesian) inference framework

− Used to infer flux surface geometry with uncertainties

− Provides model validation (equilibrium and mode structure)

− Can be used to identify faulty diagnostics & optimise systems

− Harnessed to infer properties of plasma (e.g. fast particle pressure)

• Anisotropy: equilibrium and stability 

− Development of anisotropy into EFIT++ 

− Determine impact of anisotropy on plasma stability

• Multiple Relaxed Region MHD model

− resolves chaotic field regions, islands, flux surfaces in fully 3D plasmas 

− Stepped Pressure Equilibrium Code. 

− Applied to DIIID RMP coils and ITER ELM coils as illustration. 



Toroidal plasma equilibrium in 3D



B  J,

• Simplest model to approximate global, macroscopic force-balance is 

magnetohydrodynamics (MHD).
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Toroidal plasma equilibrium in 3D



B  J,

• Simplest model to approximate global, macroscopic force-balance is 

magnetohydrodynamics (MHD).



p  JB,



B  0

• Non-axisymmetric magnetic fields generally do not have a nested 

family of smooth flux surfaces, unless ideal surface currents are 

allowed at the rational surfaces.

• If the field is non-integrable (i.e. chaotic, with a fractal phase space), 

then any continuous pressure that satisfies B∙p=0 must have an

infinitely discontinuous gradient, p.

• Instead, solutions with stepped-pressure profiles are guaranteed to 

exist. Variational principle called MRXMHD (R. L. Dewar).

• Numerical implementation, SPEC, by S. Hudson (PPPL).



• In 1974, Taylor argued that turbulent plasmas with small resistivity, 

and viscosity relax to a Beltrami field 

i.e. solutions to F=0 of functional 2/HWF 
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Internal energy: 

Taylor solved for minimum W subject to fixed H

Total Helicity : 3)( dH
V  BA I

P
V

• Zero pressure gradient regions are force-free magnetic fields:

Taylor Relaxed States

Model had a lot of success for 

toroidal pinches,  multipinch, and 

spheromaks
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New system comprises: 

 N plasma regions Pi in relaxed states.

 Regions separated by ideal MHD barrier Ii.

 Enclosed by a vacuum V,

 Encased in a perfectly conducting wall W

Generalised Taylor Relaxation:
Multiple Relaxed Region MHD (MRXMHD)

• Assume each invariant tori  Ii act as ideal MHD barriers to 

relaxation, so that Taylor constraints are localized to subregions. 
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Stepped Pressure Equilibrium Code, SPEC
[POP to appear 2012; PPCF, 54:014005, 2012] P1-1 S. Hudson

Vector potential is discretised using mixed Fourier & finite elements

& inserted into constrained-energy functional

Force balance solved using multi-dimensional Newton method
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• Coordinates (s,, )

• Interface geometry

• Exploit gauge freedom

• Fourier 

• Finite-element

• Derivatives wrt A give  Beltrami field 

• Field in each annulus computed independently, distributed across multiple cpu’s

• Field in each annulus depends on enclosed toroidal flux, poloidal flux, interfaces  

• Interface geometry adjusted to satisfy force balance 

• Angle freedom constrained by spectral condensation, 

• Dertivative matrix F[] computed in parallel using finite difference
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Example: DIIID with n=3 applied error field

formation of 

magnetic 

islands

at rational 

surfaces

• 3D boundary, p, q-profile from STELLOPT reconstruction [Sam Lazerson]

• Irrational interfaces chosen to coincide 

with pressure gradients. 

P
 (


)

• Island formation is permitted

• No rational “shielding currents” included 

in calculation.

STELLOPT

SPEC

q


S. Hudson

[Hudson et al, POP to appear 2012]



Spontaneously formed helical states

• Attempt to describe RFX-mod QSH state by a 

two-interface minimum energy MRXMHD state

• Calculation of the RFP bifurcated state, with 

energy lower than the  comparable axis-

symmetric state

• Both magnetic axes can be reproduced in 

addition to island structure and significant 

amounts of chaos

Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)

G. Dennis

• The quasi-single helicity state is a a stable helical state in RFP: 

becomes purer as current is increase



Summary
“Cross-validation of Experiment and Modelling for fusion and 

astrophysical plasmas”: 

• Probabilistic (Bayesian) inference framework

− Used to infer flux surface geometry with uncertainties

− Provide model validation (equilibrium and mode structure)

− Harnessed to infer properties of plasma (e.g. fast particle pressure)

• Anisotropy equilibrium and stability 

− Development of anisotropy into EFIT++ 

− Shown impact of anisotropy on equilibrium and plasma stability can be 

significant

• Multiple Relaxed Region MHD model

− Introduced a new MHD variational principle to resolve chaotic field 

regions, islands, flux surfaces in 3D plasmas 

− Demonstrated application of a new code “Stepped Pressure 

Equilibrium Code.” to DIIID RMP coils


